Rhizobial Saccharides. Part. 4.

Unusual Reactivity of Pyruvated Glycosyl Donors During Construction of Rhizobial Exopolysaccharide Fragments

Thomas Ziegler and Elisabeth Eckhardt

Köln, Institut für Organische Chemie, Universität
Received April 17th, 1997 respectively May 21st, 1997

Abstract

Two pyruvated galactosyl donors, 2,3-di- O-benzoyl-4,6-O-[1-(R)-methoxycarbonyl(ethylidene)]- α-D-galactopyranosyl chloride (6) and trichloroacetimidate 13, were coupled to position 3 of suitably protected mono and disaccharide benzyl glucoside acceptors. For both donors, an

unusual high content of the $\alpha-(1 \rightarrow 3)$-linked products was obtained. The corresponding β-($1 \rightarrow 3$)-linked di- and trisaccharides are related to exopolysaccharides of Rhizobium leguminosarum.

Saprophytic bacteria of the genus Rhizobium are symbionts of several agriculturally important Leguminosae (pulse). This symbiosis enables the plant to assimilate atmospheric nitrogen (N_{2}-fixation). For invading the root hairs of the respective host plant, these bacteria produce large amounts of acidic exopolysaccharides (EPS) which are thought to be involved in the species specific infection mechanisms. However, much controvery is found in the literature if these EPS are in fact essential for the infection of leguminoses by rhizobial bacteria. Therefore, synthetic fragments related to the distinct EPS of various types of Rhizobium should be attractive tools for studying these symbiotic interactions.

Ongoing efforts in our laboratory toward the synthesis of biologically relevant saccharides prompted us to prepare a series of oligosaccharides related to EPS of various types of Rhizobium bacteria [1-3]. A significant feature of numerous rhizobial EPS is the presence of immunodominant pyruvic acid acetals [4-6]. For example, the repeating unit of the EPS of Rhizobium leguminosarum biovar phaseoli contains two such acidic acetals (Scheme 1) either at adjacent glycosyl residues A and \mathbf{B} at the terminus of the side chain (A-D) or at residues \mathbf{A} and \mathbf{C}, respectively [7]. Similar adjacently dou-ble-pyruvated saccharide residues are found as well in EPS of R. leguminosarum biovars trifolii [8] and viciae [9] and in a glycolipid of Mycobacterium smegmatis
[10,11] the synthesis of which has been previously reported from our laboratory [12,13]. Here, we now describe syntheses of trisaccharide building blocks related to the side chain of EPS of R. leguminosarum biovar phaseoli having residues \mathbf{A} and \mathbf{C} pyruvylated.

Originally, it was planned to construct the crucial doubly pyruvated trisaccharide block related to the sequence ABC (Scheme 1) from a suitably protected disaccharide donor AB and a pyruvated monosaccharide acceptor \mathbf{C}. For that purpose (cp. Scheme 2), 1,2,4,6-tetra- O-benzoyl- β-D-glucopyranoside 1 [14] was first chloroacetylated [15] at position 3 followed by conversion of intermediate 2 into the corresponding glucosyl bromide 3. Next, the latter bromide was transferred into benzyl β-D-glucopyranoside 4 which was subsequently dechloroacetylated, to afford acceptor 5. Silver trifluoromethanesulfonate- (AgOTf) promoted condensation of the latter with pyruvated galactosyl chloride 6 [16,17], however, did not give the expected β ($1 \rightarrow 3$)-linked disaccharide. Instead, the α-($1 \rightarrow 3$)-linked disaccharide 7 was obtained in poor yield (33%) accompanied by hydrolysis products of the donor which were isolated as benzoate 8 after benzoylating workup of the crude reaction mixture. Similar α-selective glycosylations with pyruvated donor 6 have also been encountered previously [1] when less reactive glycosyl acceptors, like compound 5 , were used. The undesired

Scheme 1 Repeating unit of the exopolysaccharide of Rhizobium leguminosarum biovar phaseoli (CIAT 899) [7].
α-selectivity was previously thought to be either a result of a double diastereoselection $[1,18]$ during galactosylation with donor 6 or of a preferred attack of the acceptor from the convex side of the donor $[1,19]$ due to the presence of a conformationally restraining 4,6pyruvate acetal and to be the more pronounced the more sterically demanding the acceptor appeared. However, no such steric demand could be attributed to the glycosyl acceptor 5 and the α-selectivity of its coupling with 6 must be regarded as an intrinsic property of the pyru-
unusual reactivity with other pyruvated galactosyl donors, the trisaccharide block ABC (Scheme 1) was now planned to be prepared from the pyruvated trichloroacetimidate $\mathbf{1 3}$ [1] and a suitably protected disaccharide acceptor related to the sequence BC, cp. Scheme 3. Donor $\mathbf{1 3}$ was chosen here instead of chloride $\mathbf{6}$ because it was expected from previous glycosylations [1] that $\mathbf{1 3}$ reacts more β-selectively.

For the preparation of the needed disaccharide acceptor block, benzyl 4,6-O-[1-(R)-methoxycarbonyl-(ethylidene)]- α-D-galactopyranoside 9 [12] was first regioselectively benzoylated as previously described [13, 20] to afford compound 10. Next, AgOTf-promoted condensation of the latter with bromide $\mathbf{3}$ proceeded in a clean reaction, to give $\beta-(1 \rightarrow 3)$-linked disaccharide 11, final dechloroacetylation of which at position 3^{\prime} afforded acceptor 12.

When donor 13 was coupled to thus prepared disaccharide acceptor 12, a mixture of several compounds (TLC) was obtained in dichloromethane as the solvent. To this end, the crude mixture was benzoylated and chromatographed, to afford first compound $\mathbf{1 4}$ which was

Scheme 2 a) $\mathbf{1}$ [14] (1 eq.), ($\left.\mathrm{ClCH}_{2} \mathrm{CO}\right)_{2} \mathrm{O}\left(6.2\right.$ eq.), NaHCO_{3} (1.2 eq .), DMF, $2 \mathrm{~h}, 25^{\circ} \mathrm{C}, 87 \%$; b) 2 (1 eq .), $\mathrm{HBr}(30 \%$ in AcOH), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1.5 \mathrm{~h}, 25^{\circ} \mathrm{C}, 93 \%$; c) benzyl alkohol (1 eq .), AgOTf (1.25 eq .), $\mathbf{3}$ (0.74 eq .), $2,4,6$-trimethylpyridine (0.67 eq .), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 10 \mathrm{~min} ., 25^{\circ} \mathrm{C}, 69 \%$; d) 4 (1 eq.), thiourea (2 eq .), $\mathrm{MeOH}, 14 \mathrm{~h}, 25^{\circ} \mathrm{C}, 6 \mathrm{~h}, 60^{\circ} \mathrm{C}, 100 \%$; e) 1$) 5$ (1 eq.), AgOTf (1.5 eq.), 6 [16] (0.88 eq.), 2,4,6-trimethylpyridine (0.7 eq.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.5 \mathrm{~h}, 25^{\circ} \mathrm{C} ; 2$) pyridine/benzoyl chloride ($2: 1$), $0.5 \mathrm{~h}, 25^{\circ} \mathrm{C}$, $69 \% 7,22 \% 8$.
vated galactosyl donor that can be circumvented only in special cases [1]. Thus, a different strategy was chosen for the synthesis of the desired trisaccharide block as follows.

In order to abolish the problems encountered with the above outlined strategy and, furthermore, to test the
formed from unreacted acceptor upon hydrolysis and rebenzoylation. Next, trisaccharides 15 and 17 , respectively, were obtained in a ratio of $1: 1$. This result was in contrast to the previous finding that under identical conditions, when condensed with benzyl $2-O$-benzoyl-4,6-O-[1-(S)-methoxycarbonyl(ethylidene)]- α-D-gluco-

a) $\left(\begin{array}{rl}9 & R=H \\ 10 & R\end{array}=B z\right.$

c) $\left\{\begin{array}{l}11 \mathrm{R}=\mathrm{ClCH}{ }_{2} \mathrm{CO} \\ 12 \mathrm{R}=\mathrm{H}\end{array}\right.$

Scheme 3 a) [13]; b) $\mathbf{1 0}$ (1 eq.), AgOTf (1.5 eq.), $\mathbf{3}$ (1.2 eq.), 2,4,6-trimethylpyridine (0.8 eq.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 35 \mathrm{~min}$., $25^{\circ} \mathrm{C}, 85 \%$; c) $\mathbf{1 1}$ (1 eq.), thiourea (2 eq.), $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}, 19 \mathrm{~h}, 60^{\circ} \mathrm{C}, 100 \%$; d) 1) $\mathbf{1 2}$ (1 eq .), TMSOTf (0.1 eq.), $\mathbf{1 3}$ (1.1 eq .), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0.5$ h, $0^{\circ} \mathrm{C}$; 2) pyridine/benzoyl chloride ($2: 1$), $1 \mathrm{~h}, 25^{\circ} \mathrm{C}, 44 \% 14,26 \% 15,26 \%$ crude $\mathbf{1 7} ; 3$) 12 (1 eq .), TMSOTf (0.1 eq .), 13 (1.1 eq.), MeCN, $0.5 \mathrm{~h},-20^{\circ} \mathrm{C}, 15 / 18$ (38:62), 4) $\mathbf{1 5 / 1 8}$ ($38: 62$), cat. Pd-C (10%), ethyl acetate, $\mathrm{H}_{2}, 48 \mathrm{~h}, 25^{\circ} \mathrm{C}, 97 \% \mathbf{1 9}, 100 \% 16$.
pyranoside 10 [1], donor 13 gave high yields of the corresponding β-($1 \rightarrow 4$)-linked product. Thus, the high α selectivity cannot be attributed to acid catalyzed anomerisation under the reaction conditions. Similarly, when the condensation of $\mathbf{1 2}$ and $\mathbf{1 3}$ was performed in acetonitrile as the solvent (conditions which were previously found to give good β-selectivities [1]) no β-product 17 was obtained at all. Although homogeneous on TLC, the product of that reaction was shown to be a 38:62 mixture of the α-linked trisaccharide 15 and the rearranged imidate 18. Once again, galactosyl amine 18 was also previously obtained from 13 in similar glycosylations [1, 17] when acetonitrile was used as the solvent. However, in order to separate the mixture here,
the crude reaction product had to be hydrogenated prior to chromatography which converted 18 into the corresponding dichloro derivatives 19 and trisaccharide 15 into the $1-\mathrm{OH}$ derivative 16 . This procedure appeared to be very useful in cases where rearranged imidates are formed during glycosylations. As was outlined above for the condensation of chloride 6 with glucoside 5 , the unselective condensation of the imidate 13 with disaccharide acceptor $\mathbf{1 2}$ was a consequence of the special properties of pyruvated galactosyl donors.

Finally, both trisaccharides 16 and 17 were subsequently transformed into trichloroacetimidates $\mathbf{2 0}$ and 21, respectively which both can serve as donors for the synthesis of higher oligosaccharides.

In summary, it must be noted that the pyruvated galactosyl imidate 13 is a good donor for the introduction of a 4,6-O-(1-carboxyethylidene)- β-D-galactopyranosyl residue in oligosaccharide syntheses only when special optimized acceptors and reaction conditions are chosen. In these cases, this donor behaves superior to other galactosyl donors [1]. However, as was outlined here, α-linked products may be obtained in large amounts as well.

This work was financially supported by the Deutsche Forschungsgemeinschaft and the Fonds der Chemischen Industrie.

Experimental

NMR data were extracted from spectra measured in solutions of CDCl_{3} (with TMS as an internal standard) at $25^{\circ} \mathrm{C}$ with a Bruker AC 250 F spectrometer. Proton signal assignments were made by first order analysis of the spectra. Of the two magnetically non-equivalent geminal protons at $\mathrm{C}-6$, the one resonating at lower field was designated $6 \mathrm{a}-\mathrm{H}$ and the one resonating at higher field was designated $6 \mathrm{~b}-\mathrm{H}$. Carbon-signal assignments were made by mutual comparison of the spectra and by comparison with spectra of related compounds. Optical rotations were measured at $25^{\circ} \mathrm{C}$ with a Perkin-Elmer automatic polarimeter, Model 241. Melting points were measured with a Büchi apparatus, Model SMP-20. Thin-layer chromatography (TLC) was performed on precoated plastic sheets, Polygram SIL UV ${ }_{254}, 40 \times 80 \mathrm{~mm}$ (Macherey-Nagel) using appropriately adjusted mixtures of carbon tetrachlorideacetone for developing. Detection was effected with UV light, where applicable and by charring with 5% sulfuric acid in ethanol. Preparative chromatography was performed by elution
from columns of Silica Gel 60 (Merck) using carbon tetrachloride-acetone mixtures as solvent. Solutions in organic solvents were dried with anhydrous sodium sulfate, and concentrated at $2 \mathrm{kPa}, \leq 0^{\circ} \mathrm{C}$.

1,2,4,6-Tetra-O-benzoyl-3-O-chloroacetyl- β-D-glucopyranoside (2)

Chloroacetanhydride ($3.55 \mathrm{~g}, 20.8 \mathrm{mmol}$) was added at room temperature to a mixture of 1 [14] ($2.0 \mathrm{~g}, 3.35 \mathrm{mmol}$) and $\mathrm{NaHCO}_{3}(0.33 \mathrm{~g}, 3.97 \mathrm{mmol})$ in DMF (5 ml), and the mixture was stirred for 2 h whereupon the product crystallized. The mixture was diluted with ice- $\mathrm{H}_{2} \mathrm{O}$, stirred for another 0.5 h , and the product was isolated by filtration. Recrystallisation from $\mathrm{EtOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded $2(1.91 \mathrm{~g}, 87 \%)$. M.p. $213^{\circ} \mathrm{C}$; $[\alpha]_{\mathrm{D}}=+5.3\left(\mathrm{c}=1.2, \mathrm{CHCl}_{3}\right) .-{ }^{1} \mathrm{H}$ NMR: $\delta / \mathrm{ppm}=6.24(\mathrm{~d}$, $\left.1 \mathrm{H}, J_{1,2}=7.8 \mathrm{~Hz}, 1-\mathrm{H}\right), 5.85\left(\mathrm{t}, 1 \mathrm{H}, J_{2,3}=J_{3.4}=9.8 \mathrm{~Hz}, 3-\right.$ H), $5.75(\mathrm{dd}, 1 \mathrm{H}, 2-\mathrm{H}), 5.71\left(\mathrm{t}, 1 \mathrm{H}, J_{4.5}=9.5 \mathrm{~Hz}, 4-\mathrm{H}\right), 4.64$ (dd, $\left.1 \mathrm{H}, J_{5,6 \mathrm{a}}=2.9 \mathrm{~Hz}, J_{6 \mathrm{a}, 6 \mathrm{~b}}=-12.3 \mathrm{~Hz}, 6 \mathrm{a}-\mathrm{H}\right), 4.48(\mathrm{dd}, 1$ $\left.\mathrm{H}, J_{5.6 \mathrm{~b}}=4.6 \mathrm{~Hz}, 6 \mathrm{~b}-\mathrm{H}\right), 4.35(\mathrm{ddd}, 1 \mathrm{H}, 5-\mathrm{H}), 3.88(\mathrm{~s}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{Cl}$). $-{ }^{13} \mathrm{C}$ NMR: $\delta / \mathrm{ppm}=92.5(\mathrm{C}-1), 74.2,73.0,70.5(\mathrm{C}-$ 2,3,5), 68.9 (C-4), 62.5 (C-6), 40.2 ($\left.\mathrm{CH}_{2} \mathrm{Cl}\right)$.
$\mathrm{C}_{36} \mathrm{H}_{29} \mathrm{ClO}_{11}$ Calcd.: C 64.24 H 4.34 Cl 5.27
(673.1) Found: C 64.03 H 4.36 Cl 5.30.

2,4,6-Tri-O-benzoyl-3-O-chloroacetyl- α-D-glucopyranosyl bromide (3)

$\mathrm{HBr} 30 \%$ in acetic acid (1.8 ml) was added at room temperature to a stirred solution of $2(1.67 \mathrm{~g}, 2.48 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 ml) and stirring was continued for 1.5 h . The solution was successively washed with ice-cold $\mathrm{H}_{2} \mathrm{O}$ and aqueous NaHCO_{3} solution, dried and concentrated. Chromatography ($10: 1 \mathrm{CCl}_{4}$ / acetone) afforded $3(1.46 \mathrm{~g}, 93 \%) .[\alpha]_{\mathrm{D}}=+138.5(\mathrm{c}=0.8$, $\left.\mathrm{CHCl}_{3}\right) .-{ }^{1} \mathrm{H}$ NMR: $\delta / \mathrm{ppm}=6.82\left(\mathrm{~d}, 1 \mathrm{H}, J_{1,2}=4.1 \mathrm{~Hz}, 1-\mathrm{H}\right)$, $6.05,5.69\left(2 \mathrm{t}, 2 \times 1 \mathrm{H}, J_{2.3}=J_{3.4}=J_{4.5}=9.9 \mathrm{~Hz}, 3,4-\mathrm{H}\right), 5.23$ (dd, $1 \mathrm{H}, 2-\mathrm{H}$), $4.62-4.68$ (m, $2 \mathrm{H}, 5,6 \mathrm{a}-\mathrm{H}), 4.48$ (dd, 1 H ,

16

Scheme 4 a) 16 (1 eq.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (1.7 eq .), $\mathrm{Cl}_{3} \mathrm{CCN}$ (2.9 eq.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 10 \mathrm{~h}, 25^{\circ} \mathrm{C}$, 75%; b) 1) crude 17 ($1 \mathrm{eq}$. ., cat. $\mathrm{Pd}-\mathrm{C}(10 \%)$, ethyl acetate, $\mathrm{H}_{2}, 12 \mathrm{~h}, 25^{\circ} \mathrm{C} ; 2$) cat. $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{Cl}_{3} \mathrm{CCN}$ (16.6 eq.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 10 \mathrm{~h}, 25^{\circ} \mathrm{C}, 58 \%$.
$\left.J_{5.6 \mathrm{~b}}=4.7 \mathrm{~Hz}, J_{6 \mathrm{a}, 6 \mathrm{~b}}=-12.7 \mathrm{~Hz}, 6 \mathrm{~b}-\mathrm{H}\right), 3.87\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right)$. $-{ }^{13} \mathrm{C}$ NMR: $\delta / \mathrm{ppm}=86.5(\mathrm{C}-1), 72.5,72.0,70.0(\mathrm{C}-2,3,5)$, $67.8(\mathrm{C}-4), 61.8(\mathrm{C}-6), 40.2\left(\mathrm{CH}_{2} \mathrm{Cl}\right)$.
$\begin{array}{lllll}\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{BrClO}_{9} & \text { Calcd.: } & \mathrm{C} 55.13 & \text { H 3.83 } & \text { Hal 11.82 } \\ (631.9) & \text { Found: } & \text { C } 54.93 & \text { H 3.84 } & \text { Hal 11.26. }\end{array}$

Benzyl 2,4,6-tri-O-benzoyl-3-O-chloroacetyl- β-D-glucopyranoside (4)
A mixture of benzyl alcohol ($0.45 \mathrm{ml}, 4.3 \mathrm{mmol}$), AgOTf (1.38 $\mathrm{g}, 5.4 \mathrm{mmol})$ and $3 \AA$ molecular sieves $(0.5 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 ml) was stirred under Ar at room temperature for 0.5 h . To this mixture, a solution of $3(2.0 \mathrm{~g}, 3.17 \mathrm{mmol})$ and $2,4,6-$ trimethylpyridine ($348 \mathrm{mg}, 2.87 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 ml) was added, stirring was continued for 10 min , and neutralized by addition of 2,4,6-trimethylpyridine. The mixture was filtered through a layer of Celite, the filtrate was successively washed with aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and NaHCO_{3} solutions, dried and concentrated. Chromatography ($10: 1 \mathrm{CCl}_{4} /$ acetone) of the residue afforded $4(1.45 \mathrm{~g}, 69 \%) .[\alpha]_{\mathrm{D}}=-20.1$ ($\mathrm{c}=0.9$, $\left.\mathrm{CHCl}_{3}\right) .-{ }^{1} \mathrm{H}$ NMR: $\delta / \mathrm{ppm}=5.68-5.44(\mathrm{~m}, 3 \mathrm{H}, 2,3,4-\mathrm{H})$, $4.88\left(\mathrm{~d}, 1 \mathrm{H}, J=-12.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.76\left(\mathrm{~d}, 1 \mathrm{H}, J_{1,2}=7.8\right.$ $\mathrm{Hz}, 1-\mathrm{H}), 4.67\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.64\left(\mathrm{dd}, 1 \mathrm{H}, J_{5,6 \mathrm{a}}=3.3 \mathrm{~Hz}\right.$, $\left.J_{6 \mathrm{a}, 6 \mathrm{~b}}=-12.1 \mathrm{~Hz}, 6 \mathrm{a}-\mathrm{H}\right), 4.49\left(\mathrm{dd}, 1 \mathrm{H}, J_{5,6 \mathrm{~b}}=5.1 \mathrm{~Hz}, 6 \mathrm{~b}-\mathrm{H}\right)$, $4.05(\mathrm{~m}, 1 \mathrm{H}, 5-\mathrm{H}), 3.84\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right) .-{ }^{13} \mathrm{C}$ NMR: δ / ppm $=98.9(\mathrm{C}-1), 74.4,72.1,71.6(\mathrm{C}-2,3,5), 70.0\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 69.6$ (C-4), $63.0(\mathrm{C}-6), 40.2\left(\mathrm{CH}_{2} \mathrm{Cl}\right)$.
$\mathrm{C}_{36} \mathrm{H}_{31} \mathrm{ClO}_{10}$ Calcd.: $\mathrm{C} 65.61 \quad \mathrm{H} 4.74 \quad \mathrm{Cl} 5.38$
(659.1) Found: C 64.44 H 4.84 Cl 5.46.

Benzyl 2,4,6-iri-O-benzoyl- β-D-glucopyranoside (5)
A solution of thiourea ($198 \mathrm{mg}, 2.6 \mathrm{mmol}$) in $\mathrm{MeOH}(5 \mathrm{ml})$ was added at room temperature to a solution of $4(0.86 \mathrm{~g}, 1.3$ mmol) in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{ml})$ and $\mathrm{MeOH}(10 \mathrm{ml})$ and the solution was stirred for 14 h at room temperature and for 6 h at $60^{\circ} \mathrm{C}$. The mixture was concentrated, the residue redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with aqueous NaHCO_{3} solution, dried and concentrated. Chromatography (5:1 CCl_{4} / acetone) of the residue afforded $5(0.77 \mathrm{~g}, 100 \%) .[\alpha]_{\mathrm{D}}=$ $-38.2\left(\mathrm{c}=1.1, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H} \mathrm{NMR}: \delta / \mathrm{ppm}=5.41\left(\mathrm{~d}, 1 \mathrm{H}, J_{3,4}=\right.$ $\left.9.2 \mathrm{~Hz}, J_{4,5}=9.5 \mathrm{~Hz}, 4-\mathrm{H}\right), 5.29\left(\mathrm{dd}, 1 \mathrm{H}, J_{1,2}=7.9 \mathrm{~Hz}, J_{2,3}=\right.$ $9.3 \mathrm{~Hz}, 2-\mathrm{H}), 4.88\left(\mathrm{~d}, 1 \mathrm{H}, J=-12.5 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.71(\mathrm{~d}, 1$ $\mathrm{H}, 1-\mathrm{H}), 4.67\left(\mathrm{~d}, 1 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.65\left(\mathrm{dd}, 1 \mathrm{H}, J_{5,6 \mathrm{a}}=3.1 \mathrm{~Hz}\right.$, $\left.J_{6 \mathrm{a}, 6 \mathrm{~b}}=-12.3 \mathrm{~Hz}, 6 \mathrm{a}-\mathrm{H}\right), 4.46\left(\mathrm{dd}, 1 \mathrm{H}, J_{5,6 \mathrm{~b}}=12.1 \mathrm{~Hz}, 6 \mathrm{~b}-\mathrm{H}\right)$, $3.96(\mathrm{ddd}, 1 \mathrm{H}, 5-\mathrm{H}), 3.06(\mathrm{~d}, 1 \mathrm{H}, J=5.9 \mathrm{~Hz}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR: $\delta=98.8(\mathrm{C}-1), 74.9,74.0,72.4,72.0(\mathrm{C}-2,3,4,5), 70.3$ $\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 63.4$ (C-6).
$\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{O}_{9} \quad$ Calcd.: $\mathrm{C} 70.09 \quad \mathrm{H} 5.19$
(582.6) Found: C 69.79 H 5.20 .

Benzyl O-\{2,3-di-O-benzoyl-4,6-O-[(R)-1-methoxycarbonyl-(ethylidene)]- α-D-galactopyranosyl $\}-(1 \rightarrow 3$)-2,4,6-tri-O-benzoyl- β-D-glucopyranoside (7) and 1,2,3-tri-O-benzoyl-4,6-O-[(R)-1-methoxycarbonyl(ethylidene)]- $\alpha-$ - -galactopyranose (8)

A mixture of $5(0.58 \mathrm{~g}, 1.0 \mathrm{mmol}), \mathrm{AgOTf}(385 \mathrm{mg}, 1.5 \mathrm{mmol})$ and $3 \AA$ molecular sieves $(0.5 \mathrm{~g})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ was stirred under Ar at room temperature for 0.5 h . To this mixture, a solution of $6[16](0.43 \mathrm{~g}, 0.88 \mathrm{mmol})$ and $2,4,6$-trimethyl-
pyridine ($85 \mathrm{mg}, 0.7 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ was added and stirring was continued for 0.5 h . Pyridine (1 ml) and benzoyl chloride (0.5 ml) was added and stirring was continued for 0.5 h . The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and successively washed with aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ and NaHCO_{3} solution, dried and concentrated. Chromatography ($10: 1 \mathrm{CCl}_{4} /$ acetone) of the residue afforded first $7(0.31 \mathrm{~g}, 34 \%)$; m.p. $184-187^{\circ} \mathrm{C}$ (acetone/ n-hexane); $[\alpha]_{\mathrm{D}}=-49.4\left(\mathrm{c}=1.1, \mathrm{CHCl}_{3}\right) .-{ }^{1} \mathrm{H}$ NMR (significant signals): $\delta / \mathrm{ppm}=5.67\left(\mathrm{dd}, 1 \mathrm{H}, J_{2,3}=10.9 \mathrm{~Hz}, 2^{\prime}-\right.$ H), $5.52\left(\mathrm{~d}, 1 \mathrm{H}, J_{1,2}=3.8 \mathrm{~Hz}, \mathrm{l}^{\prime}-\mathrm{H}\right), 5.49\left(\mathrm{t}, 1 \mathrm{H}, J_{2.3}=9.1\right.$ $\mathrm{Hz}, 2-\mathrm{H}), 4.85,4.62\left(2 \mathrm{~d}, 2 \mathrm{H}, J=-12.5, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.28(\mathrm{dd}, 1$ $\left.\mathrm{H}, J_{4,5}=3.2 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}\right), 3.90\left(\mathrm{dd}, 1 \mathrm{H}, J_{5,6 \mathrm{a}}=5.6 \mathrm{~Hz}, 5-\mathrm{H}\right)$, $3.54\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COOCH}_{3}\right), 3.43\left(\mathrm{dd}, 1 \mathrm{H}, J_{6 \mathrm{a}, 6 \mathrm{~b}}=-12.5 \mathrm{~Hz}, 6 \mathrm{a}^{\circ}\right.$ H), $3.12 \mathrm{~b}(\mathrm{~d}, 1 \mathrm{H}, 6 \mathrm{~b}-\mathrm{H}), 1.43\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .-{ }^{13} \mathrm{C}$ NMR (significant signals): $\delta / \mathrm{ppm}=169.8\left(\mathrm{CO}_{2}\right), 98.8,98.8\left(\mathrm{C}-1,1^{\prime}\right)$, $98.5\left(\mathrm{C}_{\text {acetal }}\right), 77.9(\mathrm{C}-3), 72.8,72.5,72.2,(\mathrm{C}-2,4,5), 70.1$ $\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 69.3\left(\mathrm{C}-3^{\prime}\right), 69.2\left(\mathrm{C}-2^{2}\right), 67.0(\mathrm{C}-4), 64.6\left(\mathrm{C}-6^{\prime}\right), 63.6$ $(\mathrm{C}-6), 52.3\left(\mathrm{COOCH}_{3}\right), 25.6\left(\mathrm{CH}_{3}\right)$.
$\mathrm{C}_{58} \mathrm{H}_{52} \mathrm{O}_{18}$ Calcd.: C 67.18 H 5.05
(1037.0) Found: C 66.75 H5.05.

Eluted next was 8 ($0.11 \mathrm{~g}, 22 \%$), identical to the previously described compound [16].

Benzyl O-(2,4,6-tri-O-benzoyl-3-O-chloroacetyl- β-D-glucop-yranosyl)-(I $\rightarrow 3$)-2-O-benzoyl-4,6-O-[(S)-1-methoxycarbo-nyl(ethylidene)]- α-D-glucopyranoside (11)
A suspension of $\mathbf{1 0}$ [13] ($472 \mathrm{mg}, 1.03 \mathrm{mmol}$), AgOTf (395 $\mathrm{mg}, 1.54 \mathrm{mmol}$) and $3 \AA$ molecular sieves (0.5 g) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5$ $\mathrm{ml})$ was treated for 35 min with a solution of $3(0.78 \mathrm{~g}, 1.23$ mmol) and $2,4,6$-trimethylpyridine ($100 \mathrm{mg}, 0.83 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(7 \mathrm{ml})$ as described for the preparation of compound 7. Chromatography ($10: 1 \mathrm{CCl}_{4} /$ acetone) afforded $11(0.89 \mathrm{~g}$, $85 \%) .[\alpha]_{\mathrm{D}}=+71.0\left(\mathrm{c}=1.5, \mathrm{CHCl}_{3}\right) .-{ }^{1} \mathrm{H}$ NMR (significant signals): $\delta / \mathrm{ppm}=3.55\left(\mathrm{t}, 1 \mathrm{H}, J_{3,4}=9.9 \mathrm{~Hz}, 3-\mathrm{H}\right), 3.83(\mathrm{~s}, 3$ $\left.\mathrm{H}, \mathrm{COOCH}_{3}\right), 3.79\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}\right), 1.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .-{ }^{13} \mathrm{C}$ NMR: $\left.\delta / \mathrm{ppm}=170.0\left(\mathrm{CO}_{2}\right), 99.3\left(\mathrm{C}_{\text {acetal }}\right), 98.8(\mathrm{C}-1)^{\prime}\right), 95.9$ (C-1), 74.8, 74.7, 74.1, 73.7 (C-3,3', 4,5), 72.2, 71.7 (C-2, 2'), $69.9\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 69.4(\mathrm{C}-4), 65.2(\mathrm{C}-6), 63.2(\mathrm{C}-6 '), 62.5(\mathrm{C}-5)$, $\left.52.8\left(\mathrm{COOCH}_{3}\right), 40.2 \mathrm{CH}_{2} \mathrm{Cl}\right), 25.0(\mathrm{CH} 3)$.

$\mathrm{C}_{53} \mathrm{H}_{49} \mathrm{ClO}_{18}$	Calcd.:	C 63.06	H 4.89	Cl 3.51
(1009.4)	Found:	C 63.21	H 4.95	Cl 3.50.

Benzyl O-(2,4,6-tri-O-benzoyl- β-D-glucopyranosyl)-($I \rightarrow 3$)-2-O-benzoyl-4,6-O-[(S)-1-methoxycarbonyl(ethylidene)]- α -D-glucopyranoside (12)

A solution of $11(0.74 \mathrm{~g}, 0.73 \mathrm{mmol})$ in a $1: 4$ mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(10 \mathrm{ml})$ was treated for 19 h at $60^{\circ} \mathrm{C}$ with thiourea ($111 \mathrm{mg}, 1.46 \mathrm{mmol}$) in $\mathrm{MeOH}(2 \mathrm{ml})$ as described for the preparation of compound 5 . Chromatography $\left(5: 1 \mathrm{CCl}_{4} /\right.$ acetone) afforded 12 ($0.68 \mathrm{~g}, 100 \%$). $[\alpha]_{\mathrm{D}}=+68.7$ (c = 1.2, CHCl_{3}). - ${ }^{1} \mathrm{H}$ NMR (significant signals): $\delta / \mathrm{ppm}=5.50(\mathrm{t}, 1$ $\left.\mathrm{H}, J_{2,3}=9.9 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 5.34\left(\mathrm{~d}, 1 \mathrm{H}, J_{1,2}=6.5 \mathrm{~Hz}, \mathrm{I}-\mathrm{H}\right), 5.20-$ $5.08\left(\mathrm{~m}, 2 \mathrm{H}, J_{1,2}=8.7 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}, J_{2,3}=8.0 \mathrm{~Hz}, 4-\mathrm{H}\right), 4.66(\mathrm{dd}$, $\left.1 \mathrm{H}, J_{6 \mathrm{a}, 6 \mathrm{~b}}=-12.1 \mathrm{~Hz}, 6 \mathrm{a}^{\prime}-\mathrm{H}\right), 4.64,4.43(2 \mathrm{~d}, 2 \mathrm{H}, J=-12.2$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.54\left(\mathrm{t}, 1 \mathrm{H}, J_{4.5}=9.5 \mathrm{~Hz}, 4-\mathrm{H}\right), 4.44\left(\mathrm{dd}, 1 \mathrm{H}, J_{5,6 \mathrm{~b}}\right.$ $\left.=7.3 \mathrm{~Hz}, 6 \mathrm{~b}^{\prime}-\mathrm{H}\right), 4.16\left(\mathrm{dd}, 1 \mathrm{H}, J_{5,6 \mathrm{a}}=3.3 \mathrm{~Hz}, 5-\mathrm{H}\right), 4.07-$ $3.90\left(\mathrm{~m}, 2 \mathrm{H}, J_{5,6 \mathrm{a}}=3.3 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}, J_{6 \mathrm{a}, 6 \mathrm{~b}}=-9.9 \mathrm{~Hz}, 6 \mathrm{a}-\mathrm{H}\right)$, $3.82\left(\mathrm{dd}, 1 \mathrm{H}, J_{5,6 \mathrm{~b}}=5.3 \mathrm{~Hz}, 6 \mathrm{~b}-\mathrm{H}\right), 3.82\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COOCH}_{3}\right)$, $3.69\left(\mathrm{t}, 1 \mathrm{H}, J_{3,4}=9.5 \mathrm{~Hz}, 3-\mathrm{H}\right), 3.58\left(\mathrm{t}, 1 \mathrm{H}, J_{3,4}=10.1 \mathrm{~Hz}, 3^{\prime}-\right.$
H), $1.52\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .-{ }^{13} \mathrm{C}$ NMR: $\delta / \mathrm{ppm}=170.2\left(\mathrm{CO}_{2}\right)$, $99.4\left(\mathrm{C}_{\text {acetal }}\right), 98.3(\mathrm{C}-1), 95.9(\mathrm{C}-1), 75.5(\mathrm{C}-4), 74.6(\mathrm{C}-5)$, $74.2,73.9,73.6(\mathrm{C}-2,2,3), 72.6(\mathrm{C}-3 '), 71.5\left(\mathrm{C}-4^{\prime}\right), 69.9$ $\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 65.3(\mathrm{C}-6), 63.7(\mathrm{C}-6), 62.5(\mathrm{C}-5), 52.9\left(\mathrm{COOCH}_{3}\right)$, $25.2\left(\mathrm{CH}_{3}\right)$.
$\mathrm{C}_{51} \mathrm{H}_{48} \mathrm{O}_{17}$ Calcd.: C 65.66 H 5.19
(932.9) Found: C 65.47 H 5.34.

Benzyl O-(2,3,4,6-tetra-O-benzoyl- β-D-glucopyranosyl)($1 \rightarrow 3$)-2-O-benzoyl-4,6-O-[(S)-1-methoxycarbonyl-(ethylidene) $]-\alpha$-D-glucopyranoside (14) and benzyl O-\{2,3-di-O-benzoyl-4,6-O-[(R)-1-methoxycarbonyl(ethylidene)]- α-D-galactopyranosyl\}-($1 \rightarrow 3$)-2,4,6-tri-O-benzoyl- β-D-glucop-yranosyl-($1 \rightarrow 3$)-2-O-benzoyl-4,6-O-[(S)-1-methoxycarbo-nyl-(ethylidene)]- α-D-glucopyranoside (15) and benzyl O -(2,3-di-O-benzoyl-4,6-O-f(R)-1-methoxycarbonyl(ethylidene) J- β-D-galactopyranosyl $\}$-($1 \rightarrow 3$)-2,4,6-tri-O-benzoyl-β-D-glucopyranosyl- $(1 \rightarrow 3)-2-O$-benzoyl-4,6-O-[(S)-1-meth-oxycarbonyl-(ethylidene)]- α-D-glucopyranoside (17) and trichloroacetamido 2,3-di-O-benzoyl-4,6-O-[(R)-I-methox-ycarbonyl-(ethylidene)]- β-D-galactopyranoside (18)
(a) A solution of $\mathbf{1 3}$ [1] ($230 \mathrm{mg}, 0.37 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 $\mathrm{ml})$ was added at $0^{\circ} \mathrm{C}$ during 0.5 h to a solution of $12(0.32 \mathrm{~g}$, 0.34 mmol) and trimethylsilyl trifluoromethanesulfonate (TMSO'Tf, $6 \mu \mathrm{l}, 35 \mu \mathrm{~mol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$. The mixture was neutralized by addition of pyridine (1 ml), benzoyl chloride $(0.5 \mathrm{ml})$ was added and the solution was stirred for 1 h at room temperature. The mixture was washed with aqueous NaHCO_{3} solution, dried and concentrated. Chromatography ($10: 1 \mathrm{CCl}_{4} /$ acetone) of the residue afforded first $14(0.16 \mathrm{~g}$, $44 \%) .[\alpha]_{\mathrm{D}}=+87.1\left(\mathrm{c}=1.2, \mathrm{CHCl}_{3}\right) ;{ }^{1} \mathrm{H}$ NMR (significant signals): $\delta=5.83\left(\mathrm{t}, 1 \mathrm{H}, J_{3,4}=9.3 \mathrm{~Hz}, 3-\mathrm{H}\right), 5.68\left(\mathrm{t}, 1 \mathrm{H}, J_{4,5}\right.$ $\left.=9.6 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}\right), 5.51\left(\mathrm{dd}, 1 \mathrm{H}, J_{2,3}=9.1 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 5.36(\mathrm{~d}, 1$ $\left.\mathrm{H}, J_{1,2}=7.4 \mathrm{~Hz}, 1^{\prime}-\mathrm{H}\right), 5.13-5.08\left(\mathrm{~m}, 1 \mathrm{H}, J_{2,3}=9.8 \mathrm{~Hz}, 2-\right.$ $\mathrm{H}), 5.09\left(\mathrm{~d}, 1 \mathrm{H}, J_{1,2}=3.8 \mathrm{~Hz}, 1-\mathrm{H}\right), 4.65\left(\mathrm{dd}, 1 \mathrm{H}, J_{6 \mathrm{a}, 6 \mathrm{~b}}=\right.$ $\left.-12.1 \mathrm{~Hz}, 6 \mathrm{a}^{\prime}-\mathrm{H}\right), 4.64,4.43\left(2 \mathrm{~d}, 2 \mathrm{H}, J=-12.3 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right)$, $4.53-4.40\left(\mathrm{~m}, 1 \mathrm{H}, J_{5,6 \mathrm{~b}}=3.5 \mathrm{~Hz}, 6 \mathrm{~b} \cdot-\mathrm{H}\right), 4.23\left(\mathrm{~m}, 1 \mathrm{H}, J_{5,6 \mathrm{a}}\right.$ $\left.=4.9 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right), 3.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COOCH}_{3}\right), 1.43\left(\mathrm{~s}, 3 \mathrm{H}, 2 \mathrm{CH}_{3}\right)$. ${ }^{-13} \mathrm{C}$ NMR (significant signals): $\delta / \mathrm{ppm}=170.1\left(\mathrm{CO}_{2}\right), 99.3$ ($\mathrm{C}_{\text {acetal }}$), $99.0\left(\mathrm{C}-1^{\prime}\right), 96.0(\mathrm{C}-1), 74.8,74.2,73.4\left(\mathrm{C}-3,4,5^{\prime}\right)$, 73.3 (C-3'), $72.4,71.9$ (C-2, 2'), 69.7 (C-4), 65.3 (C-6), 63.4 $\left(\mathrm{C}-6{ }^{\prime}\right), 62.6(\mathrm{C}-5), 52.8\left(\mathrm{COOCH}_{3}\right), 25.1\left(\mathrm{CH}_{3}\right)$.
$\mathrm{C}_{58} \mathrm{H}_{52} \mathrm{O}_{18}$ Calcd.: C 67.18 H 5.05
(1037.0) Found: C 66.96 H 5.15.

Eluted next was $15(0.13 \mathrm{~g}, 26 \%)$. $[\alpha]_{\mathrm{D}}=+102.1(\mathrm{c}=1.6$, CHCl_{3}). $-{ }^{1} \mathrm{H}$ NMR (significant signals): $\delta / \mathrm{ppm}=5.64(\mathrm{dd}, 1$ $\left.\mathrm{H}, J_{2,3}=11.0 \mathrm{~Hz}, 2-\mathrm{H}\right), 5.54\left(\mathrm{t}, 1 \mathrm{H}, J_{2,3}=9.3 \mathrm{~Hz}, 2^{\prime \prime}-\mathrm{H}\right), 5.51$ $\left(\mathrm{d}, 1 \mathrm{H}, J_{1,2}=3.8 \mathrm{~Hz}, 1-\mathrm{H}\right), 4.63,4.41(2 \mathrm{~d}, 2 \mathrm{H}, J=-12.3$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 4.37\left(\mathrm{t}, 1 \mathrm{H}, J_{3,4}=8.3 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}\right), 4.24\left(\mathrm{~d}, 1 \mathrm{H}, J_{3,4}=\right.$ $\left.3.2, J_{4,5}<1 \mathrm{~Hz}, 4^{\prime \prime}-\mathrm{H}\right), 3.94\left(\mathrm{dd}, 1 \mathrm{H}, J_{5,6 \mathrm{a}}=4.7, J_{6 \mathrm{a}, 6 \mathrm{~b}}=-10.2\right.$ $\mathrm{Hz}, 6 \mathrm{a}-\mathrm{H}), 3.81\left(\mathrm{dd}, 1 \mathrm{H}, J_{5,6 \mathrm{~b}}=4.6 \mathrm{~Hz}, 6 \mathrm{~b}-\mathrm{H}\right), 3.83,3.54(2$ $\left.\mathrm{s}, 6 \mathrm{H}, 2 \mathrm{COOCH}_{3}\right), 3.33\left(\mathrm{dd}, 1 \mathrm{H}, J_{6 \mathrm{a}, 6 \mathrm{~b}}=-12.5 \mathrm{~Hz}, 6 \mathrm{a} "-\mathrm{H}\right)$, 3.81 (dd, $1 \mathrm{H}, 6 \mathrm{~b}-\mathrm{H}), 1.50,1.43\left(\mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right) .-{ }^{13} \mathrm{C}$ NMR (significant signals): $\delta / \mathrm{ppm}=170.2\left(2 \mathrm{CO}_{2}\right), 99.4,98.4$ $\left(\mathrm{C}_{\text {acetal }}\right), 98.9,98.6\left(\mathrm{C}-1^{\prime}, 1^{\prime \prime}\right), 95.9(\mathrm{C}-1), 78.1\left(\mathrm{C}-3^{\prime}\right), 74.3$, $74.0,73.3$ (C-2, 2', 2'), 73.0, 72.2, 72.0 (C-3, 4, 4"), 69.8 $\left.\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 69.1\left(\mathrm{C}-3^{\prime \prime}\right), 67.0(\mathrm{C}-4)^{\prime}\right), 65.3(\mathrm{C}-6), 64.5\left(\mathrm{C}-6{ }^{\prime \prime}\right)$, 64.2 (C-6'), $62.5\left(\mathrm{C}-5{ }^{\prime \prime}\right), 61.7(\mathrm{C}-5), 52.8,52.3\left(2 \mathrm{COOCH}_{3}\right)$, $25.625 .1\left(2 \mathrm{CH}_{3}\right)$.

FAB-MS (pos.) Calcd. for $\mathrm{C}_{75} \mathrm{H}_{70} \mathrm{O}_{26}:$ 1387.36. Found: 1409 $\left(\mathrm{M}+\mathrm{Na}^{+}\right)$.
Eluted next was crude $17(0.13 \mathrm{~g}, 26 \%)$, contaminated by a very small amount of trichloroacetamide. - ${ }^{1} \mathrm{H}$ NMR (significant signals): $\delta / \mathrm{ppm}=5.58\left(\mathrm{t}, 1 \mathrm{H}, J_{4,5}=9.1 \mathrm{~Hz}, 4^{\prime}-\mathrm{H}\right)$, $5.56\left(\mathrm{dd}, 1 \mathrm{H}, J_{2,3}=10.3 \mathrm{~Hz}, 2^{\prime}-\mathrm{H}\right), 5.29-5.18(\mathrm{~m}, 2 \mathrm{H}$, $2-\mathrm{H}), 5.06\left(\mathrm{~d}, 1 \mathrm{H}, J_{1,2}=3.8 \mathrm{~Hz}, 1-\mathrm{H}\right), 4.87-4.79(\mathrm{~m}, 2 \mathrm{H}$, $2,3-\mathrm{H}), 4.61\left(\mathrm{dd}, 1 \mathrm{H}, J_{6 \mathrm{a}, 6 \mathrm{~b}}=-11.9 \mathrm{~Hz}, 6 \mathrm{a}^{\prime}-\mathrm{H}\right), 4.61,4.39$ $\left(2 \mathrm{~d}, 2 \mathrm{H}, J=-12.2 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{Ph}\right), 4.50\left(\mathrm{dd}, 1 \mathrm{H}, J_{5.6 \mathrm{~b}}=5.8 \mathrm{~Hz}\right.$, $\left.6 \mathrm{~b}^{\prime}-\mathrm{H}\right), 4.26\left(\mathrm{~d}, 1 \mathrm{H}, J_{3,4}=3.6, J_{4,5}<1 \mathrm{~Hz}, 4 "-\mathrm{H}\right), 4.14(\mathrm{~m}$, $\left.1 \mathrm{H}, J_{5,6 \mathrm{a}}=4.4 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right), 3.92\left(\mathrm{~m}, 1 \mathrm{H}, J_{4.5}=9.7 \mathrm{~Hz}, J_{5,6 \mathrm{a}}=\right.$ $\left.4.9 \mathrm{~Hz}, J_{5.6 \mathrm{~b}}=5.0 \mathrm{~Hz}, 5-\mathrm{H}\right), 3.83,3.55\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{COOCH}_{3}\right)$, 1.47, $1.21\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right) .-{ }^{13} \mathrm{C}$ NMR (significant signals): $\delta / \mathrm{ppm}=170.4,170.3\left(2 \mathrm{CO}_{2}\right), 100.1(\mathrm{C}-1 "), 99.5,98.4(2$ $\left.\mathrm{C}_{\text {acetal }}\right), 98.7(\mathrm{C}-1$ '), $95.7(\mathrm{C}-1), 78.0(\mathrm{C}-3), 74.3,74.1,73.9$, $73.8\left(\mathrm{C}-3^{\prime}, 5^{\prime}, 4,4^{\prime \prime}\right), 72.9,71.8\left(\mathrm{C}^{\prime \prime} 2^{\prime \prime}, 2^{\prime}\right), 69.8\left(\mathrm{CH}_{2} \mathrm{Ph}\right), 69.0$, $68.5\left(\mathrm{C}-2,3^{\prime \prime}\right), 65.5\left(\mathrm{C}-5^{\prime \prime}\right), 65.3(\mathrm{C}-6), 64.4\left(\mathrm{C}-6^{\prime}, 6^{\prime \prime}\right), 62.5$ (C-5), $52.952 .2\left(2 \mathrm{COOCH}_{3}\right), 25.3,25.0\left(2 \mathrm{CH}_{3}\right)$.
CI-MS Calcd. for $\mathrm{C}_{75} \mathrm{H}_{70} \mathrm{O}_{26}$: 1387.36. Found: 1329 (M$\mathrm{COOMe}+2 \mathrm{H}^{+}$)
(b) A solution of $\mathbf{1 3}(500 \mathrm{mg}, 0.81 \mathrm{mmol})$ in acetonitrile (2 $\mathrm{ml})$ was added at once at $-20^{\circ} \mathrm{C}$ to a solution of $12(0.69 \mathrm{~g}$, $0.74 \mathrm{mmol})$ and TMSOTf ($15 \mu \mathrm{l}, 80 \mu \mathrm{~mol}$) in acetonitrile (7 ml) and the solution was stirred for 0.5 h . The mixture was neutralized by addition of pyridine $(0.5 \mathrm{ml})$, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with aqueous NaHCO_{3} solution, dried and concentrated. Chromatography ($10: 1 \mathrm{CCl}_{4}$ /acetone) of the residue afforded a $38: 62$ mixture (determined by ${ }^{\prime} \mathrm{H}$ NMR) of compounds 15 and $18(0.66 \mathrm{~g}, 36 \% 15$ with respect to $\mathbf{1 2}$, $56 \% 18$ with respect to 13).

O-\{2,3-Di-O-benzoyl-4,6-O-[(R)-1-methoxycarbonyl(ethylidene) $]-\alpha$-D-galactopyranosyl $\}$-($1 \rightarrow 3$)-2,4,6-tri-O-benzoyl-β-D-glucopyranosyl-($1 \rightarrow 3$)-2-O-benzoyl-4,6-O-[(S)-I-methoxycarbonyl(ethylidene)]-D-glucopyranose (16) and dichloroacetamido 2,3-di-O-benzoyl-4,6-O- $[(R)$ - 1 -methoxycarbonyl(ethylidene) 7- β-D-galactopyranoside (19)
A suspension of a mixture of $\mathbf{1 5}$ and $\mathbf{1 8}(0.47 \mathrm{~g})$, as described above, and $\mathrm{Pd} 10 \%$ on charcoal (0.5 g) in ethyl acetate (20 ml) was treated at room temperature for 48 h with H_{2}. The mixture was filtered and the filtrate was concentrated. Chromatography ($10: 1 \mathrm{CCl}_{4}$ /acetone) of the residue afforded first 19 (0.18 g, 97\%). M.p. $195^{\circ} \mathrm{C}$ (acetone $/ n$-hexane); $[\alpha]_{D}$ $=+105.4\left(\mathrm{c}=1.1, \mathrm{CHCl}_{3}\right) .-{ }^{1} \mathrm{H}$ NMR: $\delta / \mathrm{ppm}=8.03-7.93$ $\left(\mathrm{m}, 1 \mathrm{H}, J_{1, \mathrm{NH}}=9.1 \mathrm{~Hz}, \mathrm{NH}\right), 5.93\left(\mathrm{dd}, 1 \mathrm{H}, J_{2,3}=10.0 \mathrm{~Hz}\right.$, $\left.J_{3,4}=3.5 \mathrm{~Hz}, 3-\mathrm{H}\right), 5.85\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHCl}_{2}\right), 5.80\left(\mathrm{t}, 1 \mathrm{H}, J_{1,2}=\right.$ $9.1 \mathrm{~Hz}, 2-\mathrm{H}), 5.36(\mathrm{t}, 1 \mathrm{H}, 1-\mathrm{H}), 4.61\left(\mathrm{~d}, 1 \mathrm{H}, J_{4.5}<1.0 \mathrm{~Hz}\right.$, $4-\mathrm{H}), 4.16\left(\mathrm{dd}, 1 \mathrm{H}, J_{5,6 \mathrm{a}}=1.5 \mathrm{~Hz}, J_{6 \mathrm{a}, 6 \mathrm{~b}}=-13.1 \mathrm{~Hz}, 6 \mathrm{a}-\mathrm{H}\right)$, $4.05\left(\mathrm{dd}, 1 \mathrm{H}, J_{5,6 \mathrm{~b}}=1.7 \mathrm{~Hz}, 6 \mathrm{~b}-\mathrm{H}\right), 3.73(\mathrm{bs}, 1 \mathrm{H}, 5-\mathrm{H}), 3.69$ ($\mathrm{s}, 3 \mathrm{H}, \mathrm{COOCH}_{3}$), $1.63\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) .-{ }^{13} \mathrm{C} \mathrm{NMR:} \delta / \mathrm{ppm}=$ $169.9\left(\mathrm{COOCH}_{3}\right), 164.6(\mathrm{CONH}), 98.8\left(\mathrm{C}_{\text {acetal }}\right), 79.3(\mathrm{C}-1)$, $72.1(\mathrm{C}-4), 69.1(\mathrm{C}-3), 68.3,67.5(\mathrm{C}-2,5), 65.7\left(\mathrm{CHCl}_{2}\right), 65.0$ $(\mathrm{C}-6), 52.6\left(\mathrm{COOCH}_{3}\right), 25.6\left(\mathrm{CH}_{3}\right)$.
$\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{Cl}_{2} \mathrm{NO}_{10}$ Calcd.: C 53.62 H 4.33 Cl 12.18 N 2.41 (582.4) Found: C $53.50 \quad \mathrm{H} 4.40 \mathrm{Cl} 12.31 \mathrm{~N} 2.33$. Eluted next was $16(0.24 \mathrm{~g}, 100 \%)$. ${ }^{1} \mathrm{H}$ NMR (significant signals): $\delta / \mathrm{ppm}=5.63\left(\mathrm{dd}, 1 \mathrm{H}, J_{1,2}=3.8 \mathrm{~Hz}, J_{2,3}=10.9 \mathrm{~Hz}\right.$, $\left.\alpha-2^{\prime \prime}-\mathrm{H}\right), 5.29\left(\mathrm{dd}, 1 \mathrm{H}, J_{3,4}=3.4\right.$, Hz $\alpha-3^{\prime \prime}-\mathrm{H}$), 5.21 (bt, 1 H , $\left.J_{1,2}=8.1, \mathrm{~Hz} J_{2,3}=9.3, \beta-2-\mathrm{H}\right), 5.11\left(\mathrm{dd}, 1 \mathrm{H}, J_{1,2}=3.3 \mathrm{~Hz}\right.$, $\left.J_{2,3}=9.9 \mathrm{~Hz}, \alpha-2-\mathrm{H}\right), 4.23\left(\mathrm{~d}, 1 \mathrm{H}, J_{4,5}<1 \mathrm{~Hz}, \alpha-4^{\prime \prime}-\mathrm{H}\right), 3.83$,
$3.54\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \alpha-\mathrm{COOCH}_{3}\right), 3.32\left(\mathrm{dd}, 1 \mathrm{H}, J_{5,6 \mathrm{a}}=3.4, \mathrm{~Hz}\right.$ $\left.J_{6 \mathrm{a}, 6 \mathrm{~b}}=-11.9, \mathrm{~Hz} \alpha-6 \mathrm{a}^{\prime \prime}-\mathrm{H}\right), 3.10\left(\mathrm{bd}, 1 \mathrm{H}, \alpha-6 \mathrm{~b}^{\prime}-\mathrm{H}\right), 1.49$, $1.42\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \alpha-\mathrm{CH}_{3}\right) .-{ }^{13} \mathrm{C}$ NMR (significant signals): $\delta / \mathrm{ppm}=169.9\left(2 \mathrm{CO}_{2}\right), 99.4,98.4\left(\mathrm{C}_{\text {acetal }}\right), 98.7\left(\mathrm{C}-1^{\prime}, 1^{\prime \prime}\right)$, 91.0 (C-1), 78.1 (C-3, 3 '), 74.3 (C-5'), 74.0 (C-4'), 73.5 (C-4), 73.2 (C-2'), 72.3 (C-1'), 69.3 (C-3"), 65.3 (C-6), 64.5 (C-6"), $64.1\left(\mathrm{C}-6^{\prime}\right), 62.3\left(\mathrm{C}-5^{\prime \prime}\right), 61.7(\mathrm{C}-5), 52.9,52.3\left(2 \mathrm{COOCH}_{3}\right)$, 25.6, $25.1\left(2 \mathrm{CH}_{3}\right)$.

$\mathrm{C}_{68} \mathrm{H}_{64} \mathrm{O}_{26}$	Calcd.:	C 62.96	H 4.97
(1927.2)	Found:	C 62.77	H 5.04.

O-\{2,3-Di-O-benzoyl-4,6-O-[(R)-1-methoxycarbonyl(ethylidene)]- α-D-galactopyranosyl\}-($1 \rightarrow 3$)-2,4,6-tri-O-benzoyl-β-D-glucopyranosyl-(1®3)-2-O-benzoyl-4,6-O-[(S)-1-meth--oxycarbonyl(ethylidene)]-D-glucopyranosyl trichloroacetimidate (20)
A mixture of $\mathbf{1 6}(0.16 \mathrm{~g}, 0.12 \mathrm{mmol}), \mathrm{K}_{2} \mathrm{CO}_{3}(28 \mathrm{mg}, 0.2$ mmol) and trichloroacetonitrile ($35 \mu \mathrm{l}, 0.35 \mathrm{mmol}$) was stirred at room temperature for 10 h . The mixture was centrifuged and the supernatent solution was concentrated. Chromatography ($10: 1 \mathrm{CCl}_{4} /$ acetone) of the residue afforded $\mathbf{2 0}$ (0.13 $\mathrm{g}, 75 \%$) as a $67: 33 \alpha / \beta$-mixture of anomers. - ${ }^{1} \mathrm{H}$ NMR (significant signals): $\delta / \mathrm{ppm}=6.50\left(\mathrm{~d}, 1 \mathrm{H}, J_{1,2}=3.8 \mathrm{~Hz}, \alpha-\right.$ $1-\mathrm{H}), 5.97\left(\mathrm{~d}, 1 \mathrm{H}, J_{1,2}=6.4, \mathrm{~Hz} \beta-1-\mathrm{H}\right), 3.84,3.54(2 \mathrm{~s}, 6 \mathrm{H}$, $\left.2 \alpha-\mathrm{COOCH}_{3}\right), 1.52,1.43\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \alpha-\mathrm{CH}_{3}\right) .-{ }^{13} \mathrm{C}$ NMR (significant signals): $\delta / \mathrm{ppm}=169.9\left(2 \mathrm{CO}_{2}\right), 160.8(\mathrm{CNH})$, 99.5, $98.4\left(\mathrm{C}_{\text {acetal }}\right), 98.6\left(\mathrm{C}-1^{\prime}, 1^{\prime \prime}\right), 93.7(\mathrm{C}-1), 90.6\left(\mathrm{CCl}_{3}\right)$, 78.0 (C-3), 74.1 ($\mathrm{C}-3^{\prime}$), 73.2 (C-4), 72.5, 72.2 (C-2, 2', $\left.4^{\prime \prime}, 5^{\prime}\right)$, 69.2 (C-2", 3"), 67.0 (C-4'), 65.0 (C-6), 64.6 (C-6"), 64.0 (C$\left.6^{6}\right), 61.7\left(\mathrm{C}-5,5^{\prime \prime}\right), 53.0,52.3\left(2 \mathrm{COOCH}_{3}\right), 25.6,25.0\left(2 \mathrm{CH}_{3}\right)$. $\mathrm{C}_{70} \mathrm{H}_{64} \mathrm{Cl}_{3} \mathrm{NO}_{26}$ Calcd.: C 58.32 H 4.47 Cl 7.38 N 0.97 (1441.6) Found: C 58.22 H 4.53 Cl 7.34 N 0.79.

O-\{2,3-Di-O-benzoyl-4,6-O-[(R)-1-methoxycarbonyl(ethyl-idene)]- β-D-galactopyranosyl)-(1-3)-2,4,6-tri-O-benzoyl-β-D-glucopyranosyl-($1 \rightarrow 3$)-2-O-benzoyl-4,6-O-[(S)-I-methoxycarbonyl(ethylidene)]-D-glucopyranosyl trichloroacetimidate (21)
A suspension of crude compound $17(90 \mathrm{mg}, 60 \mu \mathrm{~mol})$ and Pd 10% on charcoal (0.1 g) in ethyl acetate (10 ml) was treated at room temperature for 12 h with H_{2}. The mixture was filtered and the filtrate was concentrated. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{ml})$ and treated with a catalytic amount of $\mathrm{K}_{2} \mathrm{CO}_{3}$ and trichloroacetonitrile ($1 \mathrm{ml}, 1.0 \mathrm{mmol}$) as described for the preparation of compound $\mathbf{2 0}$. Chromatography ($10: 1 \mathrm{CCl}_{4} /$ acetone) afforded 21 ($50 \mathrm{mg}, 58 \%$) as a $80: 20 \alpha / \beta$-mixture of anomers. - 'H NMR (significant signals of the α-anomer): $\delta /$ $\mathrm{ppm}=6.44\left(\mathrm{~d}, 1 \mathrm{H}, J_{1,2}=3.8 \mathrm{~Hz}, 1-\mathrm{H}\right), 5.59\left(\mathrm{dd}, 1 \mathrm{H}, J_{2.3}=\right.$ $\left.10.3 \mathrm{~Hz}, 2^{\prime \prime}-\mathrm{H}\right), 5.55\left(\mathrm{t}, 1 \mathrm{H}, J_{3,4}=9.0 \mathrm{~Hz}, J_{4,5}=9.7 \mathrm{~Hz}, 4^{2}-\mathrm{H}\right)$, $5.28\left(\mathrm{~d}, 1 \mathrm{H}, J_{1,2}=7.9 \mathrm{~Hz}, 1-\mathrm{H}\right), 5.29-5.21\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right)$, $5.14\left(\mathrm{dd}, 1 \mathrm{H}, J_{2,3}=9.9 \mathrm{~Hz}, 2-\mathrm{H}\right), 4.86\left(\mathrm{~d}, 1 \mathrm{H}, J_{1,2}=8.0 \mathrm{~Hz}\right.$, $\left.1^{\prime \prime}-\mathrm{H}\right), 4.83\left(\mathrm{dd}, 1 \mathrm{H}, J_{3,4}=3.6 \mathrm{~Hz}, 3 "-\mathrm{H}\right), 4.65\left(\mathrm{dd}, 1 \mathrm{H}, J_{6 \mathrm{a} .6 \mathrm{~b}}\right.$ $\left.=-11.9 \mathrm{~Hz}, 6 \mathrm{a}^{\prime}-\mathrm{H}\right), 4.52\left(\mathrm{dd}, 1 \mathrm{H}, J_{5,6 \mathrm{~b}}=6.1 \mathrm{~Hz}, 6 \mathrm{~b}^{\prime}-\mathrm{H}\right), 4.27$ (d, $\left.1 \mathrm{H}, J_{4.5}<1 \mathrm{~Hz}, 4^{\prime \prime}-\mathrm{H}\right), 4.19\left(\mathrm{~m}, 1 \mathrm{H}, J_{5,6 \mathrm{a}}=4.3 \mathrm{~Hz}, 5^{\prime}-\mathrm{H}\right)$, $4.03\left(\mathrm{dd}, 1 \mathrm{H}, J_{5,6 \mathrm{a}}=4.9, \mathrm{~Hz} J_{6 \mathrm{a}, 6 \mathrm{~b}}=-10.6 \mathrm{~Hz}, 6 \mathrm{a}-\mathrm{H}\right), 3.86$, $3.55\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{COOCH}_{3}\right), 1.48,1.25\left(2 \mathrm{~s}, 6 \mathrm{H}, 2 \mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (significant signals of the α-anomer): $\delta / \mathrm{ppm}=170.3$, $170.1\left(2 \mathrm{CO}_{2}\right), 160.6(\mathrm{CNH}), 100.2\left(\mathrm{C}-1^{\prime \prime}\right), 99.6\left(\mathrm{C}-1^{\prime}\right), 98.4$,
$98.2\left(\mathrm{C}_{\text {acetal }}\right), 93.7(\mathrm{C}-1), 90.6\left(\mathrm{CCl}_{3}\right), 77.7(\mathrm{C}-3), 73.8,73.8$, 73.4, 73.0 (C-3', 5', 4, 4"), 72.6, 71.9 (C-2", 2'), 70.5 (C-4'), $69.0,69.0,68.5$ (C-2, $3^{\prime \prime}, 5$), 65.0 (C-6, $6^{\prime \prime}$), 64.4 (C-6'), 53.0, $52.2\left(2 \mathrm{COOCH}_{3}\right), 25.3,24.9\left(2 \mathrm{CH}_{3}\right)$.
$\mathrm{C}_{70} \mathrm{H}_{64} \mathrm{Cl}_{3} \mathrm{NO}_{26}$ Calcd.: $\quad \mathrm{C} 58.32$ H 4.47 N 0.97
(1441.6) Found: C 57.85 H 4.58 N 0.90 .

References

[1] E. Eckhardt, T. Ziegler, Carbohydr. Res. 264 (1994) 253
[2] T. Ziegler, Tetrahedron Lett. 35 (1994) 6857
[3] T. Ziegler, E. Eckhardt, D. Keller, J. Carbohydr. Chem. (1997) in press
[4] T. Ziegler, Topics Curr. Chem. 186 (1997) 203
[5] A. F. Sviridov, Ch. A. Arifchodzaev, O. S. Cizov, N. K. Kochetkov, Bioorganiceskaja Chimija 6 (1980) 165
[6] N. Kojima, S. Kaya, Y. Araki, E. Ito, Eur. J. Biochem. 174 (1988) 255
[7] A. Gil-Serrano, A. S. del Junco, P. Tejero-Mateo, M. Megias, M. A. Caviedes, Carbohydr. Res. 204 (1990) 103
[8] R. I. Hollingsworth, F. B. Dazzo, K. Hallenga, B. Musselman, Carbohydr Res. 172 (1988) 97
[9] H. G. J. C. Cremers, K. Stevens, B. J. J. Lutgenberg, C. A. Wijffelman, M. Batley, J. W. Redmond, M. W. Breedveld, L. P. T. M. Zevenhuizen, Carbohydr. Res. 218 (1991) 185
[10] S. Saadat, C. E. Ballou, J. Biol. Chem. 258 (1983) 1813
[11] K.-i. Kamisango, S. Saadat, A. Dell, C. E. Ballou, J. Biol. Chem. 260 (1985) 4117
[12] T. Ziegler, E. Eckhardt, Tetrahedron Lett. 33 (1992) 6615
[13] T. Ziegler, E. Eckhardt, V. Birault, J. Org. Chem. 58 (1993) 1090
[14] J. J. Willard, J. S. Brimacombe, R. P. Brueton, Can. J. Chem. 42 (1964) 2560
[15] G. J. F. Chittenden, H. Regeling, Recl. Trav. Chim. PaysBas 106 (1987) 44
[16] T. Ziegler, E. Eckhardt, G. Herold, Liebigs Ann. Chem. 1992, 441
[17] T. Ziegler, E. Eckhardt, J. Strayle, H. Herzog, Carbohydr. Res. 253 (1994) 167
[18] N. M. Spijker, C. A. A. van Boeckel, Angew. Chem. Int. Ed. Engl. 30 (1991) 180
[19] Y. Nakahara, T. Ogawa, Tetrahedron Lett. 28 (1987) 2731
[20] I. Pelyvas, T. K. Lindhorst, H. Streicher, J. Thiem, Synthesis 1991, 1015

Address for correspondence:
Prof. Dr. Thomas Ziegler
Institut für Organische Chemie
Universität Köln
Greinstr. 4
D-50939 Köln

